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Doubly excited states in the negative hydrogen ion
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Abstract. We present a detailed analysis of doubly excited resonances in H− of both 1Se and 1Po symmetry.
Both resonance positions and total widths for auto-detachment are calculated using complex coordinate
scaling in a Sturmian-type basis in perimetric coordinates. The resonances are classified by approximate
quantum numbers with help of their Lewis structures. For the first time, a new class of shape resonances is
reported which can be understood as resulting from couplings between different adiabatic potentials with
both binding and repulsive character. In addition, we present an analysis of the so called mass polarisation
term which gives rise to specific isotope shifts.

PACS. 31.15.Ar Ab initio calculations – 31.50.+w Excited states – 32.80.Dz Autoionization

1 Introduction

Negative ions are known to be very sensitive for electron
correlation. This is especially true for their doubly excited
states, where the electron-electron interaction within the
outer pair of electrons is of the same order of magnitude
as the electron-nucleus interaction. The most simple neg-
ative ion is H− which has been studied excessively both
experimentally and theoretically [1–14].

Only the ground state of H− is truly bound. There
are no singly excited states, but there exist doubly ex-
cited states which are embedded in the continuous part
of the spectrum of the hydrogen atom and can be de-
tected as resonances in electron-hydrogen scattering or in
the photo-detachment cross-section of H−. Neglecting rel-
ativistic effects, it was shown that resonances can form
dipole series converging exponentially to each threshold
[15]. Crucial for this derivation is the strong degeneracy
of the hydrogenic parent atom which leads to the possi-
bility of forming a permanent dipole in whose field the
additional electron can be bound. If the potential is too
weak to hold a dipole series, there is still the possibility of
forming a finite number of resonances. The most promi-
nent example for such a state is the well known 1Po shape
resonance just above the N = 2 hydrogenic threshold.

Relativistic effects are negligible for resonances well be-
low the corresponding threshold. However, if their binding
energy with respect to this threshold becomes compara-
ble to the fine structure splitting of the hydrogenic parent
term the resonances will be shifted significantly and the
series will terminate. Calculations have shown that below
the N = 2 threshold the 1Se series has four and the 1Po

series three members [16,17].

a e-mail: burgers@atom.msi.se

Recent measurements on H− and D− [18,19] shifted
the interest to the so called mass polarisation term. The
full non-relativistic Hamiltonian for a two electron atom
or ion reads (in atomic units, e = me = ~ = 4πε0 = 1)

H =
p2
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2µ
+

p2
2

2µ
+

p1 · p2

M
− Z

r1
− Z

r2
+

1
r12

(1)

whereM is the mass of the nucleus and µ the reduced mass
of the electron-nucleus system, µ = (Mme)/(M +me). In
most calculations, the limit M → ∞ is taken and the
mass polarisation term is neglected. However, it is im-
portant when comparisons between calculations and mea-
surements are made or when different isotopes of the same
element are compared. It describes a specific energy shift
which is beyond a re-scaling of the energy by introducing
the correct reduced mass µ.

The mass polarisation term (or specific mass shift) has
influence on both the resonance position ER and on its
width Γ . Viewing the resonance energy as a complex en-
tity Eres = ER − iΓ/2, the (measured) energy EM

res for an
isotope with nuclear mass M and the (calculated) energy
E∞res for infinite nuclear mass are connected through

EM
res =

µ

me
E∞res +∆EM . (2)

The specific mass shift ∆EM is defined by

∆EM =
〈〈p1 · p2〉〉

M
(3)

where 〈〈.〉〉 denotes a complex matrix element (see next
section). Since the binding energies are given with respect
to the three-particle breakup threshold (i.e. the ionisation
energy of H), Re∆EM > 0 means that the resonance is
shifted closer towards threshold, i.e. its binding energy de-
creases, while Im∆EM > 0 means that its width decreases
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and the resonance is stabilized by the movement of the nu-
cleus. While reference [18] reported a small specific mass
shift which is consistent with theory, a comparatively large
mass shift was reported in reference [19] which was incon-
sistent with theoretical calculations.

2 Computational method

2.1 Basis set expansion

We calculate the resonance parameters by expanding the
full two-electron wave function as

ΨπL,M(r1, r2) =
∑

−L≤M′≤L
DLMM ′

∗
(ψ, θ, ϕ)ΦπM′(r1, r2, r12)

(4)

where the DLMM ′(ψ, θ, ϕ) are the rigid top wave functions
describing the rotation from the laboratory fixed coor-
dinate system into a body fixed frame by the Euler an-
gles ψ, θ, ϕ. Since the rigid top wave functions are known,
the integration over the Euler angles can be carried out,
leading to an effective Hamiltonian for each pair of good
quantum numbers L and M containing Coriolis-like cou-
plings of the ΦπM′(r1, r2, r12). To solve the remaining three-
dimensional problem, we transform to perimetric coordi-
nates [20,21]

x = r1 + r2 − r12

y = r1 − r2 + r12 x, y, z ≥ 0 . (5)
z = −r1 + r2 + r12

As a basis set we chose products of Sturmian-type func-
tions in the perimetric coordinates. The basis functions
for the L = 1 case read

Φnkm(r1, r2, r12) = φn(αx)φm(βy)φk(βz) (6)

where

φn(u) = Ln(u) e−u/2 (7)

and Ln(u) are the Laguerre polynomials. In the L = 0
case, D0

0 0(ψ, θ, ϕ) = 1 and we can incorporate the parity
into the basis functions,

Φπnkm(r1, r2, r12) =

φn(αx)
[
φm(βy)φk(βz) + (−1)πφk(βy)φm(βy)

]
, (8)

thus reducing the basis size since only states with m ≤ k
are needed. Although the usage of perimetric coordinates
results in a rather complicated expression for the kinetic
energy, it has several computational advantages. The vol-
ume element

dV =
8π2

32
(x+ y)(x+ z)(y + z) dxdy dz (9)

cancels all divergencies in the Hamiltonian when matrix
elements are calculated. Since the perimetric coordinates

Fig. 1. (a) Schematic view of the spectrum of the three-body
Coulomb system. The resonances are hidden in the contin-
uum. (b) Schematic view of the spectrum of the complex scaled
Hamiltonian. Whereas the bound states and thresholds remain
at the same energies as in the unrotated case, the continua are
rotated into the lower complex half plane by an angle 2ϑ. Res-
onances are exposed as complex poles Eres = ER − iΓ/2.

all run independently from 0 to ∞, the three-dimensional
integrals factorize into products of one-dimensional inte-
grals. Finally, the orthogonality and recurrence relations
of the Laguerre polynomials allow the matrix elements to
be calculated analytically. Most of them vanish exactly,
and by ordering the basis states in an appropriate way, a
strongly banded Hamilton matrix can be achieved. In our
calculations, we used α = 2β to get the correct asymp-
totic behaviour. We were able to use a maximum node
number ω = 56 in the L = 1 case and ω = 72 in the
L = 0 case leading to a basis size (band width) of 32 509
(2 898) and 34 447 (1 429), respectively, on a Fujitsu VX
with 1 800 MByte memory.

2.2 Complex scaling

To calculate the resonance parameters, we use the complex
coordinate scaling [22–25] by formally writing

β = b eiϑ . (10)

In this approach, the radial part of the wave function
is not complex conjugated when calculating matrix ele-
ments. Put in another way, for a resonant state which is
described by a purely outgoing wave [26,27] the corre-
sponding incoming wave is used as the adjoint state. This
leads to the concept of bi-orthogonal sets [23,28,29]. The
resonant state becomes square integrable and a norm can
be defined. The corresponding scalar product, which we
denote by 〈〈.〉〉, is that of complex symmetric matrices.
The complex rotated Hamiltonian Hϑ is thus no longer
hermitian and can have complex eigenvalues (see Fig. 1).

In case of the mass polarisation, the interpretation
of the complex expectation value 〈〈p1 · p2〉〉 is straight-
forward since it is proportional to an energy shift. Its
real part describes the shift of the resonance position
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and its imaginary part the modification of the resonance
width due to the motion of the nucleus. However, for
other magnitudes as the interelectronic angle θ12, the
interpretation is somewhat more involved. Following a
procedure from nuclear physics [30], we use the real part
as the expectation value in the usual meaning,

〈O 〉 ≡ Re 〈〈Ψϑ| O |Ψϑ〉〉 , (11)

where O is an operator an |Ψϑ〉〉 the state vector of the
complex rotated wave function. The imaginary part then
describes an additional contribution to the uncertainty of
the expectation value which is due to the coupling of the
resonance to the continuum [31].

We calculate several eigenvalues at a time by using
a complex version of the Lanczos algorithm [32,33].
The eigenvalues are carefully checked for convergence by
systematically increasing the basis size. The eigenvector
and matrix elements are calculated using an inverse
iteration algorithm. This program also optimizes β for
each resonance separately such that

|∂Eres/∂β| < ε (12)

using the results from the Lanczos program as start-
ing points. However, if the resonance obtained with the
Lanczos algorithm is well converged with respect to the
basis size, it fulfills the stability criterion (12) already in
the first iteration which means that in these cases, Eres

depends only weakly of the choice of b and ϑ.

3 Classification of doubly excited states

The doubly excited resonances are specified by their ap-
proximate group theoretical quantum numbers N (K,T )An
[34,35] and by the adiabatic molecular orbital quantum
numbers in the parabolic limit [N1N2m]An̄ [36–38]. The
latter are parabolic quantum numbers which describe the
separated-atom (SA)1 limit of the motion of the nucleus
in the fields of the two electrons. Here, m is the projection
of L onto the interelectronic axis and N1 and N2 are the
number of parabolic nodes. A describes the symmetry
with respect to the saddle r1 = r2 of the potential; states
with A = +1 have an anti-node, states with A = −1
have a node on this saddle. The vibration-like quantum
number n̄ simply counts the states within the adiabatic
potential. The group theoretical and molecular orbital
(approximate) quantum numbers are connected as follows:

A = A T = m

K = N2 −N1 (13)
N = N1 +N2 +m+ 1

n =
{
N + n̄ for A = +1
N + n̄+ 1 for A = −1

.

N is thus the principle quantum number of the residual
hydrogen state when the outer electron is detached. How-
ever, n cannot be understood as a hydrogen-like principal

1 This term comes from the corresponding H+
2 molecule

where the role of the protons and electrons is just reversed.
Here, one should rather speak of separated electrons.

quantum number since the outer electron is not bound in
a Coulomb potential.

To assign the approximate quantum numbers we use
the interelectronic angle since [34,39]

〈cos θ12〉 −→
n→∞

− K

N
· (14)

A detailed discussion of the interelectronic angle and its
connection to the approximate quantum numbers can be
found in [39,40].

4 Results

We calculated the resonance position and width together
with some expectation values for H− 1Se states up to the
N = 10 and for H− 1Po states up to the N = 8 hydro-
genic thresholds (−0.005a.u. and −0.0078125a.u., respec-
tively). The resonance energies and widths are shown in
Figure 2. The numbers can be found in Tables 3 and 4 in
the Appendix. In addition, we give the expectation val-
ues for the cosine of the interelectronic angle as well as
the mean radii 〈r<〉 and 〈r>〉 of the inner and the outer
electron, respectively. The latter are obtained by recon-
structing the unsymmetrized Lewis structure from the ex-
pectation values of the Jacobi coordinates r = (r1 + r2)/2
and r12 = r2−r1 and the angle θ12 = arccos〈cos θ12〉 using
triangle relations [31].

The states marked by crosses here are Feshbach-type
resonances which bind to a hydrogenic parent state cor-
responding to the next higher threshold and form dipole
series as predicted by [15]. Many of these resonances have
been calculated before e.g. by adiabatic calculations in hy-
perspherical coordinates [10] and by complex scaling cal-
culations in Hylleraas coordinates [11,12], though some
of the 1Se resonances below the N = 9 threshold were
originally assigned different quantum numbers.

Regarding Figure 2b, one can easily distinguish two
classes of Feshbach-type 1Po resonances by their width.
They differ in their approximate quantum number A.
Since auto-detachment mainly goes via the saddle r1 = r2
of the potential, states with an anti-node there (A = +1)
have a larger width than states with a node on this saddle
(A = −1). In the case of 1Se resonances (Fig. 2a), there
is only one such class since only states with A = +1 are
allowed.

4.1 A new class of resonances?

The open symbols in Figure 2 mark complex poles which
belong to another class. Only one of these (marked by the
diamond) has been known before, it is the well-known 1Po

N (K,T )A2 = 2(0, 1)+
2 (or [N1N2m]An̄ = [0 0 1]+0 ) shape res-

onance which has been studied for a long time. The other
poles have not been discussed previously. Since those poles
do not fit into the current understanding of the spectrum
of H−, the question arises whether they are physical solu-
tions of the Schrödinger equation or numerical artefacts.



330 The European Physical Journal D

Fig. 2. Doubly excited reso-
nances of H− of 1Se symmetry
(a) and 1Po symmetry (b). The
open symbols mark shape res-
onances. The lowest 1Po shape
resonance (marked by the dia-
mond) has been known for a
long time and can be described
by a single adiabatic potential
[10]. The others (marked by cir-
cles) are discussed here for the
first time and are probably due
to non-adiabatic couplings be-
tween those potentials.

Fig. 3. Complex poles of 1Se symmetry in the vicinity of the
N = 2 threshold. The results are shown for ω = 58, 60, 62,
and 64 (the smaller the symbol, the larger the basis set. The
parameters were ϑ = 0.30 (triangles), ϑ = 0.45 (squares), and
ϑ = 0.60 (circles), b = 0.33 in all cases. For ϑ > 0.30 an
additional pole shows up as indicated by the arrow. It is rather
well converged and present in all basis sets provided ϑ is large
enough to uncover it. The other pole which shows up for ϑ =
0.60 with a positive imaginary part, however, is a numerical
artefact; it only shows up for this particular set of parameters
and is badly converged (not visible on this scale).

4.1.1 Convergence

In Figure 3, we show our raw data for 1Se symmetry in
the vicinity of the N = 2 threshold, calculated for three
different rotation angles ϑ. For sufficiently large ϑ, an ad-
ditional pole (indicated by the arrow) shows up, which is
present in several basis sets employing various basis set

parameters b and ϑ. It is very well converged with respect
to the size of the basis set, as shown in Table 1. It even
occurs in a numerically completely different calculation,
which is shortly described in Section 4.3. Hence, from the
computational point of view, we have no reason to dismiss
this pole (and the other, similar ones) as unphysical. In
each case, however, we made sure that these poles occur
in several different basis sets and are well converged. (The
pole situated closely above the threshold in Figure 3 which
has the positive imaginary part is a numerical artefact. It
occurs only for their specific parameter set and is only
slightly converged.)

4.1.2 Properties

All these new resonances have the following properties:
1. they have a relative large width;
2. the expectation value of the cosine of the interelec-

tronic angle, 〈cos θ12〉, is very close to 0 and eventually
positive;

3. the mean radius of the inner electron, 〈r<〉, is small
compared to that of the other states lying below the
same hydrogenic threshold and compares rather well to
those of the states below a lower threshold. A careful
examination of 〈r<〉 of some of the higher lying shape
resonances suggests that they bind not to the next
lower, but to even lower hydrogenic parent states;

4. the mass polarisation term is rather large.
From this, we conclude that the corresponding states

are shape resonances binding to a lower N state of the
hydrogenic parent atom. One of these shape resonances,
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Table 1. The complex eigenvalue representing the 1Se shape
resonance in H− above the N = 2 threshold for increasing
maximum node number ω of the basis set. The parameters for
the basis set are (see Eq. (10)): b = 0.33 and ϑ = 0.45.

ω Re E Im E

22 −0.103075569061 −0.015681789950

24 −0.103068260169 −0.015609087483

26 −0.103028806527 −0.015607083946

28 −0.103023163702 −0.015629114023

30 −0.103036538718 −0.015624912996

32 −0.103039992720 −0.015628075975

34 −0.103036538718 −0.015624912996

36 −0.103034378364 −0.015626571221

38 −0.103035117460 −0.015627989132

40 −0.103036012384 −0.015627703034

42 −0.103035936864 −0.015627157899

44 −0.103035614403 −0.015627146577

46 −0.103035574977 −0.015627331439

48 −0.103035677829 −0.015627373151

50 −0.103035712390 −0.015627317969

52 −0.103035684090 −0.015627292338

54 −0.103035666363 −0.015627306076

56 −0.103035672471 −0.015627317719

58 −0.103035679835 −0.015627315396

60 −0.103035679248 −0.015627310900

62 −0.103035676592 −0.015627310771

64 −0.103035676243 −0.015627312296

the 1Po
N (K,T )A2 = 2(0, 1)+

2 (or [N1N2m]An̄ = [0 0 1]+0 )
shape resonance, results in a very broad and prominent
structure in the photo detachment cross-section and has
been known for a long time. It is also present in adiabatic
hyperspherical and earlier complex scaling calculation and
results from a potential well in the [N1N2m]A = [0 0 1]+
adiabatic potential. Other adiabatic potentials with KA =
0+ (e.g. 1Se [1 1 0]+, 1Se [2 2 0]+, ... or 1Po [1 1 1]+, 1Po

[2 2 1]+, ...) should also be able to hold resonances. Since
the polarisability of the hydrogenic parent state increases
with higherN , these states could lie below the correspond-
ing dissociation threshold, as it is the case for the 1Se

[1 1 0]+0 , 1Se [2 2 0]+0 , and 1Se [3 3 0]+0 below the N = 3,
N = 5 and N = 7 thresholds or the 1Po [1 1 1]+0 and the
1Po [2 2 1]+0 states below the N = 4 and N = 6 thresholds,
respectively. Eventually, some of these potentials could be
deep enough to hold more then one resonance, and it could
happen that the higher one were situated above the cor-
responding threshold, turning it into a shape resonance.
Actually, we discovered two 1Se resonances with KA = 0+

binding with respect to the N = 7 state of H, but both
lie below the corresponding threshold. Similarly, we found
two KA = 0+ resonances below the N = 9 threshold.

There is evidence to believe that the discovered shape
resonances are not of the type discussed above:

1. their expectation value of cos θ12 does not match with
that of KA = 0+ resonances below the corresponding
threshold;

2. their mean radii 〈r<〉 and 〈r>〉 are smaller than those
of the KA = 0+ resonances mentioned above. If both
the KA = 0+ and the shape resonances would reside
in the same potential, the expectation values for the
shape resonance should be larger;

3. some of these resonances lie rather highly above the
next lower threshold that would support KA = 0+

states. The adiabatic potentials of 1Po symmetry cal-
culated in hyperspherical coordinates [10] would not
support the resonances presented here;

4. there should not be any resonances with KA = 0+

above thresholds with even N in 1Se symmetry and
odd N in 1Po symmetry. However, we find shape res-
onances even there. (The KA = 0− potentials calcu-
lated for 1Po symmetry [10] are purely repulsive and
should not support shape resonances. Such potentials
do not exist in 1Se, where only A = +1 is allowed.)
We hence believe that these new shape resonances are

due to a non-adiabatic coupling between different binding
and anti-binding adiabatic potentials which corresponds
to a mixing of N (K,T ) or [N1N2m] approximate quan-
tum numbers where both positive and negative K would
occur. This is the reason why we did not even try to assign
approximate quantum numbers to these states.

4.2 Variation of the nuclear charge

The approximate character of the two-electron quantum
numbers has been known since a long time [35] and was re-
cently studied in detail by investigating the interelectronic
angle in 1Se states of helium [39,40]. It was found that for
N ≥ 3, the [N1N2m]A = [0 N−1 0]+ and [1 N−2 0]+
adiabatic basis states mix in avoided crossings of the res-
onance energies under a variation of the nuclear charge Z.
As N increases, more and more of these adiabatic basis
states are involved. At N = 10, only the [9 0 0]+ series can
be described as pure. As Z approaches one, the number of
avoided crossings increases and hence does the mixing of
adiabatic basis states. We believe that it is by this mixing
that shape resonances with 〈cos θ12〉 > 0 can occur in H−
although the adiabatic potentials with K < 0 are purely
repulsive.

In Figure 4, we show the variation of the lowest doubly
excited 1Se energy levels with the nuclear charge Z, which
corresponds to a variation of the relative strength of the
electron-electron interaction. At the left margin, we have
the case of uncorellated electrons which can be described
as a product state of hydrogenic wave functions. Moving
to the right, the electron-electron correlation increases,
but the states are still well described by the approximate
N (K,T )An or [N1N2m]An̄ quantum numbers until the en-
ergy levels undergo avoided crossings where they exchange
character. This would lead to a mixing of (adiabatic) basis
states carrying the approximate quantum numbers. Even-
tually, a continuum state residing in an anti-binding adi-
abatic potential with 〈cos θ12〉 > 0 could acquire sufficient
bound state character to prevail as a short-lived shape
resonance as it is shown here for the lowest 1Se shape res-
onance marked by the arrow on the right margin.
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Fig. 4. Resonance energies of 1Se symmetry under variation of
the relative strength of the electron-electron interaction. The
approximate quantum numbers are mixed in avoided crossings
between the energy levels. The arrow marks the position of
the lowest 1Se shape resonance which evolves from the N = 2
manifold. In the threshold region (marked by the horizontal
line), accurate results cannot be obtained since we have to
truncate our basis set (in this calculation, it was truncated at
ω = 52).

Why have these resonances not been known previ-
ously? On the theoretical side, they do not occur in adia-
batic hyperspherical calculations. This is consistent with
the idea that the exist due to a non-adiabatic coupling of
MO (or other) adiabatic basis states. Further, since these
resonances are rather broad and situated quite closely
above the corresponding thresholds, they require a rather
large angle ϑ to be uncovered in complex scaling calcula-
tions (see also [45]).

4.3 Photo-absorption cross-section

To investigate whether these resonances should be de-
tectable in an experiment, we calculate the photo-absorp-
tion cross-section which is given by

σ(ω) =
4π
3
ω

c
Im

(∑
n

〈〈Ψϑ0 | d |Ψϑn 〉〉2
En −E0 − ~ω

)
. (15)

Here, d is the operator for an optical dipole transition, E0

is the energy and Ψϑ0 the (complex rotated) wave function
of the ground state, respectively. The sum runs over all
poles of the complex rotated Hamiltonian, i.e. over both
resonances and continuum states [14]. Here, we use d in

its length form, d = (r1 + r2)ε̂, where ε̂ is the polarisation
vector of the light source. The calculations are performed
for unpolarized light.

Unfortunately, the cross-section calculated in our Stur-
mian basis set is less accurate than the resonance position
and width or other expectation values. For reasons of nu-
merical stability, we are forced to use the same β for the
calculation of all states occurring in (15) including the
ground state. To achieve good convergence for the reso-
nant states, we use b ≤ 1/N for states below the Nth
threshold. Thus for highly excited states, the calculation
of the photo-absorption cross-section is actually hampered
by a less accurate presentation of the ground state.

We therefore use a different numerical scheme to cal-
culate the photo-absorption cross-section which based on
complex scaling and B-spline basis functions. This ap-
proach treats both ground state an resonant state basis
functions on equal footing. It is described in detail in
[14,46].

Photo excitation goes preferably to N (K,T )An =N

(N−2, 1)+
n states ([N1N2m]A = [0N−2 1]+ in MO nota-

tion) [37]. This is the reason why the 1Po
2(0, 1)+

2 shape
resonance just above the H(N = 2) threshold is so strong.
The other shape resonances do not belong to this class and
hence will be rather weak. This is demonstrated in Fig-
ure 5 where we show the photo-absorption cross-section
from the ground state in the energy region between the
N = 3 and N = 4 hydrogenic thresholds where the next
higher 1Po shape resonance is situated. The cross-section
is calculated using (15) (full line). For comparison, the
dashed line shows the cross-section without the presence
of the shape resonance, i.e. where this eigenvalue is omit-
ted in the summation in (15). The position and width of
the shape resonance is also marked. Clearly, its presence
leads to broad but weak modulation of the “background”
in between the sharp Feshbach-like peaks which makes it
hard to detect experimentally.

However, remanents of one such shape resonances
might have already been seen in an experiment. Harris
et al. [4,5] reported a shallow dip just above the N = 4
hydrogenic threshold at a photon energy of 13.55 eV. This
coincides with the position of the 1Po shape resonance
we found at Eres = (−0.02950891 − i 0.00329825)a.u.
However, its FWHM would be Γ = 0.17940eV, which
is much broader than the observed dip. This resonance
would strongly overlap with the threshold itself. The
consequences of this are not fully understood yet and
need further investigation. Unfortunately, we have not
succeeded in getting converged results for the photo-
absorption cross-section with either approach since one
needs a rather large angle ϑ to uncover the shape reso-
nance.

There is another conceptual problem with these reso-
nances. In a very crude classical model, we take the surplus
energy of the resonance above the threshold as the kinetic
energy of its outer electron, Ekin = ER−Ethr, to calculate
the distance that it travels under the lifetime τ = 1/Γ
of the doubly excited state. For the resonance above,



A. Bürgers and E. Lindroth: Doubly excited states in the negative hydrogen ion 333

12.8 12.9 13.0 13.1 13.2 13.3 13.4 13.5
Photon Energy (eV)

5.0

5.5

6.0

6.5

7.0

7.5

C
ro

ss
 S

ec
tio

n 
(M

ba
rn

)

Γ

Fig. 5. Photo detachment cross-section for H− between the
N = 3 and N = 4 thresholds. The full line is the to-
tal cross-section including the 1Po shape resonance at E =
−0.04767516 a.u., the dashed line shows the cross-section with-
out this resonance. Both the resonance position and full width
at half maximum are marked. The shape resonance gives rise
to a weak and broad structure in the “background” which is
hard to detect.

this model implies that the outer electron would travel
only on a 15◦ arc of a circular orbit with of radius 〈r>〉.
On the other hand, the same estimate leads to a 245◦ arc
for the well-known 1Po resonance just above the N = 2
threshold. Of course the question arises whether such a
state still can be called a resonance. A similar situation is
found in the recently published contribution on the ques-
tion whether there exist resonances in H2− [47]. The res-
onances proposed there are also not present in adiabatic
calculations [48,49].

4.4 Mass polarisation

In Tables 3 and 4 in the Appendix, we also show our results
for the mass polarisation term. For 1Se states, 〈〈p1 ·p2〉〉 is
calculated as expectation value from the resonance wave
function for M → ∞, while for 1Po states, we calculate
both E∞res and EM

res by the Lanczos algorithm to determine
〈〈p1 · p2〉〉 according to (2) and (3).

As was suggested in [18], the mass polarisation con-
tribution within a dipole series characterized by com-
mon [N1N2m]A or N (K,T )A approximate quantum num-
bers decreases when approaching the threshold. However,
this decrease is not necessarily monotonic. It seems that
the larger N2, the more zeroes can both real and imag-
inary part of 〈〈p1 · p2〉〉 have. Further, it was suggested
that the specific shift of the resonance energies given by
Re 〈〈p1 · p2〉〉 should be larger for states with A = +1
than for states with A = −1 [18]. This is not found in
our calculations. However, we find that Im 〈〈p1 · p2〉〉, i.e.
the variation of the width, is about one order of magni-
tude larger for A = +1 states than for A = −1 states.
Looking at table 4 one finds, that Im 〈〈p1 · p2〉〉 is of the

Table 2. Mass polarisation contributions for some resonant
states with higher L.

ER Γ/2 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
1De −0.12792 0.00015 −0.0063 −0.0005

−0.06595 0.00083 0.0014 0.0017

1Fo −0.05514 0.00041 −0.0012 0.0010

3Fo −0.05544 0.00013 0.0001 0.0001

order of 10−5 for A = −1 states, but of the order of 10−4

for A = +1 states. On the other hand, these states also
have a larger width, so that the relative change of the life-
time is approximately the same. The shape resonances,
however, have comparably large mass polarisation contri-
butions. But even here, the shift of the resonance energy
and the variation of their width is small when compared
to their total width Γ .

One might of course ask whether other symmetries
could have much larger mass polarisation terms. We have
thus tested a few other symmetries using the method de-
scribed in [14]. The results are given in Table 2. The posi-
tions and widths of these resonances agree well with earlier
calculations [50,51]. The mass polarisation contributions
for these states are found to be of the same order of mag-
nitude as for the 1Se and 1Po symmetry. Rislove et al. [19]
measured a specific mass shift of the 1De resonance below
the N = 2 threshold of (−2.4 ± 1.1) meV corresponding
to Re 〈〈p1 ·p2〉〉 = (−0.16± 0.07)a.u. which is in clear dis-
agreement with our calculation. However, our calculation
is in good agreement with other calculations cited in [19].

The mass polarisation term 〈〈p1 ·p2〉〉 is often discussed
in connection with the search for correlation in the elec-
tron momenta. This connection is suggested by its similar-
ity to 〈〈cos θ12〉〉 = 〈〈(r1 · r2)/(r1r2)〉〉 which in turn is con-
nected to the K approximate quantum number expressing
angular correlation. However, the analysis of 〈〈p1 · p2〉〉 is
more complicated since it not only contains the angle be-
tween the electron’s momenta, but also their size. Hence,
we are afraid that studying the mass polarisation term will
not lead to an understanding of electron momentum corre-
lation. Our results do not suggest any simple relation sim-
ilar to (14). Moreover, the effects of the mass polarisation
to the resonance energies are suppressed by the relative
large mass of the nucleus. For a much lighter system like
Ps−, momentum correlation should be more pronounced.

5 Conclusion

We presented a detailed study of doubly excited reso-
nances in the negative hydrogen ion of both 1Se and 1Po

symmetry using complex coordinate scaling in a Sturmian-
type basis set in perimetric coordinates. The results are
given in the appendix for further reference. We list the
resonance energies and widths together with some char-
acteristic expectation values, including mass polarisation.
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Energies and widths of approximately half of the states
have been published earlier [11,12,52], but are included
in the table for convenience. Here, we give our own results
where we were able to press convergence even further. The
energies and widths of the highly lying, asymmetrically ex-
cited states and all the expectation values are published
here for the first time.

We also found a new type of shape resonances which
have not been known previously. We suggest that they are
due to couplings between various adiabatic potentials and
hence a mixing of approximate quantum numbers which
would prevent them from occurring in adiabatic calcula-
tions. They result in broad and weak structures in the
photo absorption cross-section which are hard to distin-
guish from the smooth “background” coming from non-
resonant photo detachment, but with improved statistics
it is maybe possible to investigate them experimentally.
One of these shape resonances, the lowest 1Po shape res-
onance above the N = 4 hydrogenic threshold, coincides
in its position with a hitherto unexplained structure in
the photo-detachment cross-section at a photon energy of
13.55 eV [4,5]. Unfortunately, we did not succeed in ob-
taining converged results for the cross-section that would
include this shape resonance. A verification of the shape
resonances is thus still an open question.

We like to thank Jan-Michael Rost for fruitful discussions. This
work was carried out under the European Union’s TMR Pro-
gramme contract no ERBFMBICT961473. Computation time
at the Center of Parallel Computing (PDC) is gratefully ac-
knowledged.
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Appendix: Tables

Table 3. Non-relativistic resonance energies and width (calculated for infinite nuclear mass), interelectronic angle, the mean
radii for the inner and outer electron and the mass polarisation for the 1Se states of H−. The states are identified by their group
theoretical quantum numbers N (K,T )An and parabolic molecular orbital quantum numbers [N1 N2 m]An̄ . The results are given
in atomic units (e = me = ~ = 4πε0 = 1) and are converged to all digits shown.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
1(0, 0)+

1 [0 0 0]+0 −0.52775101654 — −0.105148 1.7102 3.7102 0.032879782 —

2(1, 0)+
2 [0 1 0]+0 −0.14877625394 0.00086661817 −0.506000 4.7693 10.3699 0.000964503 0.001412238

2(1, 0)+
3 [0 1 0]+1 −0.12602006374 0.00004526486 −0.499773 5.1247 40.2588 0.000045151 0.000047937

2(1, 0)+
4 [0 1 0]+2 −0.12505785 0.00000261 −0.493217 5.3 168.7 0.000002 0.000003

shape −0.103035676 0.015627312 0.123496 5.7929 8.7209 0.0165390 −0.0259438

3(2, 0)+
3 [0 2 0]+0 −0.06900579528 0.00070944235 −0.646297 10.2203 22.3287 0.000707031 0.002644300

3(2, 0)+
4 [0 2 0]+1 −0.05778163192 0.00015416915 −0.660131 11.1997 46.9345 −0.000303307 0.000487553

3(2, 0)+
5 [0 2 0]+2 −0.05600661052 0.00002515647 −0.643028 10.9803 102.1046 −0.000020377 0.000214531

3(2, 0)+
6 [0 2 0]+3 −0.0556491427 0.0000065009 −0.659062 11.04 230.36 −0.00001733 0.00001894

3(2, 0)+
7 [0 2 0]+4 −0.05557495 0.00000138 −0.65934 15. 505. −0.0000038 0.0000038

3(0, 0)+
3 [1 1 0]+0 −0.05614328476 0.00004483091 −0.132554 11.3985 30.4209 0.003426781 0.000219548

shape −0.03543901515 0.00813107640 −0.016653 14.2332 18.9336 0.020531353 −0.013023061

4(3, 0)+
4 [0 3 0]+0 −0.03963554677 0.00047708478 −0.724761 17.2497 39.7209 0.000731177 0.001909780

4(3, 0)+
5 [0 3 0]+1 −0.03356680740 0.00017022027 −0.739368 18.9159 65.6714 −0.000428359 0.000553021

4(3, 0)+
6 [0 3 0]+2 −0.03201748612 0.00006393837 −0.741525 19.3088 112.4864 −0.000181455 0.000227401

4(3, 0)+
7 [0 3 0]+3 −0.03150704045 0.00002255121 −0.739348 19.1077 195.1177 −0.000055765 0.000089601

4(3, 0)+
8 [0 3 0]+4 −0.03133587618 0.00000751284 −0.742733 19.210 341.524 −0.00002149 0.00002832

4(3, 0)+
9 [0 3 0]+5 −0.03127883 0.00000252 −0.74256 20. 596. −0.0000075 0.0000097

4(1, 0)+
4 [1 2 0]+0 −0.03472003578 0.00043288174 −0.293308 19.4933 38.5300 0.001323821 −0.000081085

4(1, 0)+
5 [1 2 0]+1 −0.03146854508 0.00003478236 −0.269247 19.7857 104.9574 0.000272350 0.000019316

4(1, 0)+
6 [1 2 0]+2 −0.031263875 0.000002377 −0.247255 19.72 367.88 0.00002116 0.00000293

shape −0.0285503068 0.0013187669 −0.002742 22.7511 35.4331 0.003069312 −0.002298963

5(4, 0)+
5 [0 4 0]+0 −0.02570040545 0.00034468519 −0.775320 26.2938 62.0818 0.000810221 0.001409505

5(4, 0)+
6 [0 4 0]+1 −0.02207410441 0.00016640612 −0.787234 29.3032 90.1167 −0.000335607 0.000617013

5(4, 0)+
7 [0 4 0]+2 −0.02089098994 0.00008477270 −0.790071 29.9227 133.9052 −0.000194904 0.000376560

5(4, 0)+
8 [0 4 0]+3 −0.02038700741 0.00003885873 −0.792230 29.7187 204.1983 −0.000075029 0.000193832

5(4, 0)+
9 [0 4 0]+4 −0.0201680756 0.0000173403 −0.817482 29.5572 319.7972 −0.000035556 0.000099111

5(4, 0)+
10 [0 4 0]+5 −0.020072765 0.000007454 −0.793538 29.591 479.577 −0.00001006 0.00004036

5(2, 0)+
5 [1 3 0]+0 −0.02331649404 0.00035444723 −0.403242 29.6671 58.8784 0.001085553 0.000564679

5(2, 0)+
6 [1 3 0]+1 −0.02068526640 0.00009568618 −0.410881 30.6884 105.5668 0.000237351 0.000187365

5(2, 0)+
7 [1 3 0]+2 −0.02016826882 0.00002179667 −0.357822 30.1202 186.4042 0.000134863 0.000073275

5(2, 0)+
8 [1 3 0]+3 −0.02004207571 0.00000647135 −0.393123 30.255 394.705 0.00001704 0.00001237

5(0, 0)+
5 [2 2 0]+0 −0.02021030174 0.00006895984 −0.143592 32.4781 72.7392 0.001444318 0.000328415

shape −0.01688487596 0.00126851629 0.004229 37.2919 51.2972 0.004254580 −0.000400141

shape −0.01588872720 0.00439433907 −0.113195 28.1186 36.5683 0.016717692 −0.009183702

6(5, 0)+
6 [0 5 0]+0 −0.0180119076 0.0002554607 −0.810550 36.9331 89.6948 0.000785213 0.000982209

6(5, 0)+
7 [0 5 0]+1 −0.01567107356 0.00015176084 −0.819559 41.5889 119.9481 −0.000214044 0.000582548

6(5, 0)+
8 [0 5 0]+2 −0.01479483303 0.00009476959 −0.825404 42.9590 161.5933 −0.000107464 0.000494645

6(5, 0)+
9 [0 5 0]+3 −0.01435896271 0.00004941459 −0.825674 42.3685 223.3434 0.000045857 0.000295288

6(5, 0)+
10 [0 5 0]+4 −0.01413199457 0.00002385068 −0.826597 42.2996 313.4730 0.000073744 0.000143824

6(5, 0)+
11 [0 5 0]+5 −0.0140136232 0.0000113388 −0.825008 42.610 442.380 0.00005352 0.00006463

6(5, 0)+
12 [0 5 0]+6 −0.01395254 0.00000551 −0.827768 41.9 627.0 0.0000312 0.0000306

6(3, 0)+
6 [1 4 0]+0 −0.0166695354 0.0002790225 −0.484815 40.2767 86.2203 0.000624644 0.000394056

6(3, 0)+
7 [1 4 0]+1 −0.01475610758 0.00011071232 −0.492618 42.1209 129.5636 0.000123554 0.000084723

6(3, 0)+
8 [1 4 0]+2 −0.01421467987 0.00005304750 −0.495280 43.2860 201.3953 0.000041530 0.000070311

6(3, 0)+
9 [1 4 0]+3 −0.01401288263 0.00002257653 −0.491350 42.8398 319.6700 0.000021548 0.000036273

6(3, 0)+
10 [1 4 0]+4 −0.013935268 0.000008969 −0.48833 42.937 520.749 0.00000443 0.00001494
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Table 3. Continued.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
6(1, 0)+

6 [2 3 0]+0 −0.01505883976 0.00017964991 −0.238806 45.4366 83.2309 0.000678739 −0.000132489

6(1, 0)+
7 [2 3 0]+1 −0.01396761795 0.00002029182 −0.207821 44.673 189.812 0.00021838 0.00002492

shape −0.0131288011 0.0002400331 −0.033856 51.462 83.774 0.001381109 −0.000482012

shape −0.012239305 0.002846921 0.19467 45.519 77.107 0.0005262 −0.0029562

7(6, 0)+
7 [0 6 0]+0 −0.013323093 0.000193673 −0.836171 49.2587 122.5013 0.00067732 0.00068849

7(6, 0)+
8 [0 6 0]+1 −0.01172242713 0.00013425005 −0.843091 55.6410 155.0580 −0.000132233 0.000506431

7(6, 0)+
9 [0 6 0]+2 −0.01107655511 0.00009344814 −0.845252 54.9763 195.6101 0.000041769 0.000496261

7(6, 0)+
10 [0 6 0]+3 −0.01072165030 0.00004467633 −0.850111 56.9697 249.4060 0.000238379 0.000222573

7(6, 0)+
11 [0 6 0]+4 −0.01050922393 0.00001456737 −0.850774 57.1039 324.5148 0.000193499 0.000032149

7(6, 0)+
12 [0 6 0]+5 −0.01038320642 0.00000306967 −0.850529 57.3045 422.4547 0.000120172 −0.000006755

7(6, 0)+
13 [0 6 0]+6 −0.0103087999 0.0000003276 −0.851034 57.200 557.352 0.000066315 −0.000002211

7(6, 0)+
14 [0 6 0]+7 −0.01026473 0.00000009 −0.852061 56.91 745.67 0.0000331 0.0000016

7(4, 0)+
7 [1 5 0]+0 −0.01251037501 0.00021249120 −0.546555 53.7365 117.1581 0.000531544 0.000354625

7(4, 0)+
8 [1 5 0]+1 −0.01111082414 0.00011967383 −0.563975 58.7599 160.9299 0.000052737 0.000177156

7(4, 0)+
9 [1 5 0]+2 −0.01062958229 0.00008096584 −0.564235 58.8726 218.7823 −0.000022478 0.000184679

7(4, 0)+
10 [1 5 0]+3 −0.01041263759 0.00004817646 −0.567999 58.2036 301.4518 0.000018316 0.000169967

7(4, 0)+
11 [1 5 0]+4 −0.0103072411 0.0000241440 −0.562267 57.719 427.312 0.000062500 0.000095705

7(4, 0)+
12 [1 5 0]+5 −0.010254288 0.000011404 −0.56316 57.83 626.57 0.00004313 0.00004130

7(2, 0)+
7 [2 4 0]+0 −0.01154025645 0.00017511818 −0.315414 60.6512 111.1057 0.000785337 0.000222574

7(2, 0)+
8 [2 4 0]+1 −0.01050855234 0.00005517383 −0.315819 61.0785 183.0693 0.000218059 0.000152303

7(2, 0)+
9 [2 4 0]+2 −0.01028393198 0.00001626733 −0.293088 59.8942 317.3280 0.000071544 0.000049280

7(0, 0)+
7 [3 3 0]+0 −0.01075799323 0.00079933509 −0.018869 55.8531 67.2973 0.004598373 −0.000762021

7(0, 0)+
8 [3 3 0]+1 −0.01032434054 0.00006491491 −0.135839 66.7767 117.3769 0.000763760 0.000302251

shape −0.01012995 0.00008913 −0.0346 62.0 189.8 −0.000007 −0.000222

shape −0.009597985 0.000991857 0.08124 61.46 104.56 0.0004137 −0.0014476

shape −0.00907232272 0.00029514929 0.002370 72.9972 95.6482 0.002058014 −0.000694991

shape −0.008565870 0.002476991 −0.24117 47.334 63.534 0.0098318 −0.0009272

8(7, 0)+
8 [0 7 0]+0 −0.0102536a 0.0001506 — — — 0.00057 0.00051

8(7, 0)+
9 [0 7 0]+1 −0.00910889026 0.00011774326 −0.861145 71.7287 195.1685 −0.0000925997 0.000441813

8(7, 0)+
10 [0 7 0]+2 −0.0086317289 0.0000856070 −0.865244 71.8982 233.3368 0.000175506 0.000446169

8(7, 0)+
11 [0 7 0]+3 −0.00834678699 0.00002696759 −0.868319 73.0913 283.5529 0.000299639 0.000066835

8(7, 0)+
12 [0 7 0]+4 −0.00816432312 0.00000073759 −0.868539 74.2107 334.4941 0.000171613 0.000001804

8(7, 0)+
13 [0 7 0]+5 −0.00804234703 0.00000651028 −0.868385 74.470 427.490 0.000010473 −0.000006560

8(7, 0)+
14 [0 7 0]+6 −0.0079554247 0.0000110929 −0.868822 74.474 562.270 −0.000047285 −0.000047508

8(7, 0)+
15 [0 7 0]+7 −0.007899421 0.000010345 −0.867490 75.14 732.42 −0.000054548 −0.000067272

8(7, 0)+
16 [0 7 0]+8 −0.00786490 0.00000794 −0.869405 73.8 956.4 −0.0000433 −0.0000732

8(7, 0)+
17 [0 7 0]+9 −0.0078440 0.0000055 −0.87043 — — −0.000024 −0.000067

8(5, 0)+
8 [1 6 0]+0 −0.00972110856 0.00015987162 −0.596161 67.8105 154.1427 0.000434275 0.000280379

8(5, 0)+
9 [1 6 0]+1 −0.00868457123 0.00010984610 −0.610427 75.2737 197.5833 0.000022177 0.000174044

8(5, 0)+
10 [1 6 0]+2 −0.00830000761 0.00009194699 −0.615034 76.8276 239.6108 0.000076787 0.000288097

8(5, 0)+
11 [1 6 0]+3 −0.00810469486 0.00004491821 −0.619626 75.0017 311.9291 0.000209032 0.000100377

8(5, 0)+
12 [1 6 0]+4 −0.00797854403 0.00001457179 −0.614326 75.727 421.197 0.000123063 −0.000003512

8(5, 0)+
13 [1 6 0]+5 −0.00790395469 0.00000455930 −0.617630 74.96 572.10 0.00006344 −0.00000926

8(5, 0)+
14 [1 6 0]+6 −0.00786255635 0.00000157196 −0.617008 74.94 777.52 0.000035261 −0.000004752

8(5, 0)+
15 [1 6 0]+7 −0.007839733 0.000000560 −0.6146 75. 1059. 0.00001944 −0.00000255

8(3, 0)+
8 [2 5 0]+0 −0.00908634696 0.00016554571 −0.408038 74.5773 154.6859 0.000243550 0.000193234

8(3, 0)+
9 [2 5 0]+1 −0.00823322420 0.00006533947 −0.382333 75.9060 212.6560 0.000184955 0.000002852

8(3, 0)+
10 [2 5 0]+2 −0.00797766268 0.00003712890 −0.383477 77.4826 316.4644 0.000073383 0.000038404

8(3, 0)+
11 [2 5 0]+3 −0.00787817089 0.00001819609 −0.36680 77.170 469.806 0.000034387 0.000020233

8(3, 0)+
12 [2 5 0]+4 −0.007836762 0.000008035 −0.3559 77.0 743.0 0.0000102 0.0000104

8(1, 0)+
8 [3 4 0]+0 −0.00836289136 0.00008445004 −0.215543 83.4332 143.7768 0.000434394 −0.000064415

8(1, 0)+
9 [3 4 0]+1 −0.00785035753 0.00001255004 −0.199970 78.894 318.932 0.000160016 0.000022374
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Table 3. Continued.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
shape −0.0073021921 0.0005128598 −0.041819 79.5485 90.7041 0.003716462 −0.000695257

shape −0.006965845 0.000961105 0.086253 85.261 139.631 0.00077093 −0.00106547

shape −0.00648176489 0.00030275588 −0.018432 98.9791 123.0143 0.002101727 −0.000761046

9(8, 0)+
9 [0 8 0]+0 −0.00813a 0.00012 — — — 0.00045 0.00037

9(8, 0)+
10 [0 8 0]+1 −0.00728676175 0.00010354564 −0.875349 89.9565 240.0685 −0.000065714 0.000400026

9(8, 0)+
11 [0 8 0]+2 −0.00693111930 0.00007353751 −0.879699 90.1350 277.5412 0.000258597 0.000356468

9(8, 0)+
12 [0 8 0]+3 −0.00670216083 0.00001058140 −0.881878 91.3199 321.8195 0.000274313 0.000003773

9(8, 0)+
13 [0 8 0]+4 −0.00654665844 0.00000663355 −0.881368 93.8607 377.5739 0.000045563 0.000005680

9(8, 0)+
14 [0 8 0]+5 −0.0064185679 0.0000249144 −0.881786 93.7024 492.7618 −0.000144794 −0.000144146

9(8, 0)+
15 [0 8 0]+6 −0.0063399669 0.0000617298 −0.881584 102.924 288.706 −0.00055379 0.00095612

9(8, 0)+
16 [0 8 0]+7 −0.0063130645 0.0000219591 −0.884036 93.952 713.504 0.00033358 −0.00006607

9(8, 0)+
17 [0 8 0]+8 −0.0062617104 0.0000096578 −0.883301 94.360 837.594 0.00010166 0.00000140

9(8, 0)+
18 [0 8 0]+9 −0.006230045 0.000005088 −0.883560 94.18 1038.88 0.00005013 0.00000217

9(6, 0)+
9 [1 7 0]+0 −0.007765594 0.000127338 −0.63580 84.166 196.488 0.00036463 0.00025555

9(6, 0)+
10 [1 7 0]+1 −0.00697828789 0.00009853151 −0.647235 92.9740 241.2936 −0.000024710 0.000181432

9(6, 0)+
11 [1 7 0]+2 −0.00668504636 0.00008433047 −0.643709 97.3903 273.1841 0.000163469 0.000259327

9(6, 0)+
12 [1 7 0]+3 −0.00650760052 0.00002470166 −0.658697 93.8573 349.2617 0.000200530 0.000010622

9(6, 0)+
13 [1 7 0]+4 −0.00638268094 0.00000207533 −0.658149 94.9479 428.5437 0.000113673 −0.000002776

9(6, 0)+
14 [1 7 0]+5 −0.00630287289 0.00000131428 −0.656762 94.9377 552.3727 0.000048073 0.000006949

9(6, 0)+
15 [1 7 0]+6 −0.00625092121 0.00000250168 −0.656959 94.7538 731.1280 0.000017926 0.000000352

9(6, 0)+
16 [1 7 0]+7 −0.0062190464 0.0000022486 −0.657955 94.338 961.233 0.000008761 −0.000002674

9(6, 0)+
17 [1 7 0]+8 −0.00620007 0.00000157 −0.6586 93. 1263. 0.000005 −0.000002

9(4, 0)+
9 [2 6 0]+0 −0.00734671122 0.00012535592 −0.434231 93.1497 187.2097 0.000346657 0.000162988

9(4, 0)+
10 [2 6 0]+1 −0.00665273669 0.00007934639 −0.460419 96.8096 252.8660 0.000063012 0.000097099

9(4, 0)+
11 [2 6 0]+2 −0.00640953938 0.00008060794 −0.460311 101.2435 285.0239 −0.000052822 0.000259554

9(4, 0)+
12 [2 6 0]+3 −0.00632260460 0.00004318780 −0.450194 95.3809 397.3053 0.000145014 0.000074408

9(4, 0)+
13 [2 6 0]+4 −0.00625231743 0.00001389175 −0.441502 96.9451 559.3923 0.000077805 −0.000014424

9(4, 0)+
14 [2 6 0]+5 −0.00621218306 0.00000542794 −0.44349 96.72 797.90 0.00003718 −0.00000605

9(4, 0)+
15 [2 6 0]+6 −0.00619241 0.00000212 −0.4353 96. 1116. 0.000018 −0.000004

9(2, 0)+
9 [3 5 0]+0 −0.00685967040 0.00010155532 −0.270290 102.1229 179.4379 0.000581210 0.000079823

9(2, 0)+
10 [3 5 0]+1 −0.00633911397 0.00004065403 −0.279203 105.6416 271.3966 0.000235191 0.000162177

9(2, 0)+
11 [3 5 0]+2 −0.00621515959 0.00001120879 −0.238081 99.9964 460.1576 0.000049854 0.000037105

9(0, 0)+
9 [4 4 0]+0 −0.00751392408 0.00007060016 −0.050773 91.4855 158.4665 0.000705895 −0.000041340

9(0, 0)+
10 [4 4 0]+1 −0.00624954679 0.00005227339 −0.125631 110.4143 182.0725 0.000484239 0.000162704

shape −0.00611213 0.00003996 −0.0556 103.3 308.7 0.0000725 −0.0001353

shape −0.0058153394 0.0003958043 0.025836 104.340 180.072 0.00036907 −0.00073119

shape −0.00525362531 0.00031986319 −0.052478 111.7998 122.2470 0.002901509 −0.000207756

10(9, 0)+
10 [0 9 0]+0 −0.0064b — — — — — —

10(9, 0)+
11 [0 9 0]+1 −0.00596466502 0.00009162464 −0.886948 110.0518 289.9356 −0.000037491 0.000369900

10(9, 0)+
12 [0 9 0]+2 −0.00569614418 0.00006056954 −0.891137 109.2893 328.7529 0.000298546 0.000262688

10(9, 0)+
13 [0 9 0]+3 −0.00551076975 0.00000270672 −0.892589 111.8824 368.3672 0.000217804 0.000003120

10(9, 0)+
14 [0 9 0]+4 −0.0053686477 0.0000177072 −0.891699 115.8120 443.1426 −0.000053358 −0.000045599

10(9, 0)+
15 [0 9 0]+5 −0.005263711 0.000072975 −0.891935 126.373 329.429 −0.00037680 0.00075085

10(9, 0)+
16 [0 9 0]+6 −0.0052241845 0.0000242751 −0.895397 112.352 620.608 0.00029163 −0.00005597

10(9, 0)+
17 [0 9 0]+7 −0.0051489679 0.0000087590 −0.887418 108.332 717.368 0.000083371 −0.000000642

10(9, 0)+
18 [0 9 0]+8 −0.0051009033 0.0000036484 −0.893600 116.869 862.205 0.000046404 0.000000714

10(9, 0)+
19 [0 9 0]+9 −0.0050685228 0.0000015761 −0.894614 116.079 1047.208 0.000026723 0.000001065

10(9, 0)+
20 [0 9 0]+10 −0.00504660 0.00000069 −0.89497 114. 1276. 0.000016 0.000002

10(7, 0)+
10 [1 8 0]+0 −0.0062b — — — — — —

10(7, 0)+
11 [1 8 0]+1 −0.00573389850 0.00009167609 −0.677415 114.4299 288.9163 −0.000021151 0.000225552

10(7, 0)+
12 [1 8 0]+2 −0.0055101680 0.0000727346 −0.684782 116.0909 323.1091 0.000230443 0.000239012

10(7, 0)+
13 [1 8 0]+3 −0.00535290956 0.00001002314 −0.690768 114.2385 389.0233 0.000176426 −0.000005209

10(7, 0)+
14 [1 8 0]+4 −0.00523860854 0.00000283845 −0.688813 117.3978 467.8580 0.000071117 0.000012792
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Table 3. Continued.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
10(7, 0)+

15 [1 8 0]+5 −0.00515225718 0.00000826867 −0.695785 119.4937 614.6629 0.000023022 −0.000018432

10(7, 0)+
16 [1 8 0]+6 −0.00509369202 0.00000775471 −0.690063 116.7021 795.5313 0.000016688 −0.000030758

10(7, 0)+
17 [1 8 0]+7 −0.00505766909 0.00000521920 −0.687936 117.160 1009.460 0.000019712 −0.000021186

10(7, 0)+
18 [1 8 0]+8 −0.0050473800 0.0001010142 −0.687096 131.974 303.857 −0.000126820 0.000580887

10(7, 0)+
19 [1 8 0]+9 −0.005035794 0.000003157 −0.6881 114. 1272. 0.000015 −0.000012

10(5, 0)+
10 [2 7 0]+0 −0.0060455938 0.0001000992 −0.481919 109.8371 234.5029 0.00029505 0.00012570

10(5, 0)+
11 [2 7 0]+1 −0.00549324160 0.00007381984 −0.498007 118.9031 293.8205 0.000067182 0.000088377

10(5, 0)+
12 [2 7 0]+2 −0.00530690756 0.00007713107 −0.495626 120.7225 317.4621 0.000184202 0.000186436

10(5, 0)+
13 [2 7 0]+3 −0.00519983265 0.00002196045 −0.503520 117.8278 433.1554 0.000143517 −0.000011722

10(5, 0)+
14 [2 7 0]+4 −0.00511609341 0.00000350228 −0.495992 119.3901 549.1501 0.000080271 −0.000010366

10(5, 0)+
15 [2 7 0]+5 −0.00506688854 0.00000058932 −0.497370 118.4186 720.7342 0.000044000 0.000000231

10(5, 0)+
16 [2 7 0]+6 −0.0050382261 0.0000004709 −0.49881 117.91 964.63 0.00002451 0.00000378

10(5, 0)+
17 [2 7 0]+7 −0.005021464 0.000000340 −0.488 119. 1283. 0.0000121 0.0000026

10(5, 0)+
18 [2 7 0]+8 −0.0050121 0.0000004 −0.492 103. 1737. 0.000005 −0.000001

10(3, 0)+
10 [3 6 0]+0 −0.00571201597 0.00010078558 −0.281961 127.1396 211.2606 0.000479865 0.000113932

10(3, 0)+
11 [3 6 0]+1 −0.00524051816 0.00004090879 −0.320808 120.7256 313.2870 0.000178666 −0.000016013

10(3, 0)+
12 [3 6 0]+2 −0.00509282134 0.00002615484 −0.315213 121.9048 470.1776 0.000073909 0.000023555

10(3, 0)+
13 [3 6 0]+3 −0.0050349499 0.0000123691 −0.28019 121.91 675.15 0.00004713 0.00000451

10(1, 0)+
10 [4 5 0]+0 −0.00565411766 0.00009578782 −0.081939 123.4942 179.0634 0.000790685 −0.000357167

10(1, 0)+
11 [4 5 0]+1 −0.00531016773 0.00004581209 −0.207344 132.9508 221.9836 0.000297138 −0.000011167

10(1, 0)+
12 [4 5 0]+2 −0.005022878 0.000008656 −0.19804 123.1 492.1 0.0001153 −0.0000038

a Perturber, direct calculation [41–43]
b Perturber, estimated position

Table 4. Same as Table 3, but for states of 1Po symmetry.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
2(1, 0)−3 [0 1 0]−0 −0.12604985948 0.00000068419 −0.448412 4.9543 34.3482 0.00069912 −0.00000459

2(1, 0)−4 [0 1 0]−1 −0.125035052 0.000000039 −0.446917 4.7935 186.6065 0.000021 −0.000007

2(0, 1)+
2 [0 0 1]+0 −0.124393557 0.000350504 −0.063674 5.9516 11.6084 0.00241412 −0.00217722

3(2, 0)−4 [0 2 0]−0 −0.05857181141 0.00000449363 −0.641551 10.6358 39.6874 0.00148018 0.00003117

3(2, 0)−5 [0 2 0]−1 −0.05611640047 0.00000112952 −0.635329 10.7356 90.1585 0.00026362 0.00000740

3(2, 0)−6 [0 2 0]−2 −0.055663057 0.000000198 −0.637171 10.81 206.73 0.0000508 0.0000014

3(1, 1)+
3 [0 1 1]+0 −0.0627167721 0.0005957403 −0.340662 10.7445 22.2336 0.0016597 0.0003285

3(1, 1)+
4 [0 1 1]+1 −0.0559062460 0.0000355146 −0.339397 10.9878 73.6296 0.0002142 0.0000247

3(1, 1)+
5 [0 1 1]+2 −0.0555764 0.0000026 −0.331 9. 277. 0.000015 −0.000002

shape −0.04767516 0.00431197 0.014749 11.1683 20.1125 0.00795 −0.00579

4(3, 0)−5 [0 3 0]−0 −0.03429402719 0.00000915162 −0.727544 18.2305 58.1303 0.00119544 0.00006711

4(3, 0)−6 [0 3 0]−1 −0.03219830788 0.00000395831 −0.731498 18.9243 100.5821 0.00033358 0.00002678

4(3, 0)−7 [0 3 0]−2 −0.03155519623 0.00000136181 −0.719576 18.8682 175.9287 0.00009777 0.00000915

4(3, 0)−8 [0 3 0]−3 −0.031349806 0.000000438 −0.73007 18.7 312.3 0.0000329 0.0000031

4(2, 1)+
4 [0 2 1]+0 −0.03717945790 0.00051677410 −0.479652 18.1071 38.8917 0.001117 0.000956

4(2, 1)+
5 [0 2 1]+1 −0.03235104573 0.00012063609 −0.493448 19.2409 74.8107 0.0001654 0.0002272

4(2, 1)+
6 [0 2 1]+2 −0.031497534 0.000032822 −0.497505 19.1447 153.5025 0.000007 0.000120

4(1, 0)−5 [1 2 0]−0 −0.03161320952 0.00000298090 −0.273885 19.6541 79.2863 0.00054327 0.00000186

4(0, 1)+
4 [1 1 1]+0 −0.0313233 0.0000568 −0.140 19.5 65.7 0.0023 0.0001

shape −0.02950891 0.00329825 0.07091 20.22 34.08 0.00025 −0.00349

shape −0.02311464 0.00298775 −0.0178 17.01 39.29 0.008854 −0.003818

5(4, 0)−6 [0 4 0]−0 −0.02263065147 0.00001181991 −0.779015 27.6962 82.6507 0.00091307 0.00008767

5(4, 0)−7 [0 4 0]−1 −0.0210700270 0.0000075306 −0.722680 31.0357 117.1287 0.0004069 0.0000655
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Table 4. Continued.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
5(4, 0)−8 [0 4 0]−2 −0.0204461387 0.0000032383 −0.785293 29.2750 191.2750 0.0001142 0.0000228

5(4, 0)−9 [0 4 0]−3 −0.02018919341 0.00000142399 −0.782842 29.2011 294.5763 0.0000453 0.0000098

5(4, 0)−10 [0 4 0]−4 −0.02008078 0.00000061 −0.78481 29.5 453.7 0.000020 0.000004

5(3, 1)+
5 [0 3 1]+0 −0.02451674280 0.00038466422 −0.570017 26.9470 61.1230 0.00077182 0.00080245

5(3, 1)+
6 [0 3 1]+1 −0.0213297438 0.0001468122 −0.585697 28.9627 95.9553 −0.0000079 0.0002246

5(3, 1)+
7 [0 3 1]+2 −0.02047120306 0.00006198903 −0.588251 29.5056 155.6960 −0.0000202 0.0001121

5(3, 1)+
8 [0 3 1]+3 −0.020168827 0.000023724 −0.589554 29.397 258.429 −0.0000060 0.0000469

5(3, 1)+
9 [0 3 1]+4 −0.02006025 0.00000877 −0.58981 28. 438. −0.000005 0.000018

5(2, 0)−6 [1 3 0]−0 −0.02103170005 0.00000943899 −0.468394 28.8687 93.9226 0.00050532 0.00001322

5(2, 0)−7 [1 3 0]−1 −0.02024029718 0.00000302929 −0.395658 30.1413 167.1814 0.00016976 0.00000959

5(2, 0)−8 [1 3 0]−2 −0.020056467 0.000000741 −0.3870 30.4 334.2 0.0000423 0.0000025

5(1, 1)+
5 [1 2 1]−0 −0.02181449120 0.00025324335 −0.251491 31.0913 58.5868 0.00087553 −0.00011962

5(1, 1)+
6 [1 2 1]+1 −0.020106449 0.000021936 −0.225427 30.8951 148.8443 0.0002162 0.0000233

shape −0.0197551 0.0003136 −0.062 32. 70. 0.00016 −0.00071

shape −0.018478927 0.000562917 −0.030766 38.04 51.76 0.0024011 −0.0012644

shape −0.017266302 0.002941883 0.075028 32.8869 52.9811 0.001496 −0.003411

6(5, 0)−7 [0 5 0]−0 −0.0160878815 0.0000129948 −0.813700 38.9890 112.6096 0.0007094 0.0000961

6(5, 0)−8 [0 5 0]−1 −0.0149327709 0.0000088882 −0.818259 40.4078 156.2870 0.0002390 0.0000635

6(5, 0)−9 [0 5 0]−2 −0.01440259791 0.00000512104 −0.818559 42.1480 219.0886 0.00010894 0.00003747

6(5, 0)−10 [0 5 0]−3 −0.01414449963 0.00000271930 −0.821040 41.886 311.552 0.00004982 0.00001960

6(5, 0)−11 [0 5 0]−4 −0.014016832 0.000001405 −0.820711 41.8 442.2 0.0000238 0.0000100

6(4, 1)+
6 [0 4 1]+0 −0.0173595938 0.0002757828 −0.634035 37.8149 88.0941 0.0006652 0.0006166

6(4, 1)+
7 [0 4 1]+1 −0.0152060983 0.0001450995 −0.649620 41.6945 123.6457 −0.0000321 0.0002778

6(4, 1)+
8 [0 4 1]+2 −0.01448349925 0.00008554092 −0.653370 42.3863 175.4877 −0.00005195 0.00022942

6(4, 1)+
9 [0 4 1]+3 −0.0141626038 0.0000441140 −0.655664 42.10 256.02 −0.0000095 0.0001526

6(4, 1)+
10 [0 4 1]+4 −0.014014549 0.000020979 −0.656763 42.1 379.8 0.0000070 0.0000799

6(3, 0)−7 [1 4 0]−0 −0.01511016337 0.00001421216 −0.494614 42.6014 112.9150 0.00052089 0.00004871

6(3, 0)−8 [1 4 0]−1 −0.01432433581 0.00000696334 −0.494352 42.9854 177.2240 0.00019923 0.00002148

6(3, 0)−9 [1 4 0]−2 −0.01404563317 0.00000277055 −0.439953 42.8352 263.1894 0.00010504 0.00000381

6(2, 1)+
6 [1 3 1]+0 −0.0158735282 0.0002449534 −0.347047 43.5503 83.0471 0.0008997 0.0003149

6(2, 1)+
7 [1 3 1]+1 −0.01431564622 0.00006955765 −0.351338 44.4559 142.8225 0.00023693 0.00015729

6(2, 1)+
8 [1 3 1]+2 −0.01399404647 0.00001743332 −0.325108 43.381 256.313 0.00010564 0.00001279

6(1, 0)−7 [2 3 0]−0 −0.01406344209 0.00000403272 −0.2647 43.96 160.99 0.00037951 0.00001060

6(0, 1)+
6 [2 2 1]+0 −0.01400286586 0.00006937239 −0.13866 48.09 95.25 0.00094817 0.00046503

shape −0.01314779358 0.00070197580 −0.00310 47.1392 83.3798 0.000569 −0.001108

shape −0.01190611905 0.00074381997 −0.001393 54.0599 75.6763 0.00206603 −0.00168826

shape −0.010914763 0.002237373 0.045390 48.9851 74.6379 0.002255 −0.002934

7(6, 0)−8 [0 6 0]−0 −0.01203774958 0.00001327045 −0.838803 52.0837 147.8503 0.00056632 0.00009683

7(6, 0)−9 [0 6 0]−1 −0.01117514783 0.00001044212 −0.843187 54.6393 193.4675 0.00020153 0.00007456

7(6, 0)−10 [0 6 0]−2 −0.01073367888 0.00000768850 −0.747698 53.3378 240.9868 0.00011477 0.00001611

7(6, 0)−11 [0 6 0]−3 −0.01049929197 0.00000410896 −0.845529 56.8869 343.4063 0.00004868 0.00003028

7(6, 0)−12 [0 6 0]−4 −0.01036878543 0.00000238492 −0.846745 56.748 461.278 0.00002599 0.00001761

7(6, 0)−13 [0 6 0]−5 −0.01029626 0.00000134 −0.84705 57. 623. −0.00008 0.00007

7(5, 1)+
7 [0 5 1]+0 −0.01292250777 0.00020356134 −0.681687 50.1114 120.5662 0.00054553 0.00047923

7(5, 1)+
8 [0 5 1]+1 −0.0114148112 0.0001304375 −0.694756 55.8905 157.4325 −0.0000515 0.0002769

7(5, 1)+
9 [0 5 1]+2 −0.01084916591 0.00009448720 −0.698552 57.6997 201.4903 0.00000122 0.00033361

7(5, 1)+
10 [0 5 1]+3 −0.0105622582 0.0000509551 −0.703854 56.765 266.883 0.0001462 0.0002008

7(5, 1)+
11 [0 5 1]+4 −0.0104003605 0.0000221426 −0.704675 56.75 365.91 0.0001305 0.0000616
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Table 4. Continued.

state ER Γ/2 〈cos θ12〉 〈r<〉 〈r>〉 Re〈〈p1 · p2〉〉 Im〈〈p1 · p2〉〉
7(5, 1)+

12 [0 5 1]+5 −0.010309257 0.000009283 −0.705147 56.5 507.3 0.000074 0.000013

7(4, 0)−8 [1 5 0]−0 −0.01140241316 0.00001539359 −0.557433 56.3532 145.7302 0.00042733 0.00005672

7(4, 0)−9 [1 5 0]−1 −0.01074023868 0.00000911432 −0.637595 62.2941 216.0911 0.00020985 0.00007308

7(4, 0)−10 [1 5 0]−2 −0.01044670804 0.00000512502 −0.559912 57.9619 297.5991 0.00008349 0.00001796

7(4, 0)−11 [1 5 0]−3 −0.0103155677 0.0000025025 −0.54179 58.09 425.83 0.0000375 0.0000084

7(4, 0)−12 [1 5 0]−4 −0.0102562 0.0000012 −0.5571 58. 646. 0.00022 0.00018

7(3, 1)+
7 [1 4 1]+0 −0.01202201586 0.00020910186 −0.424515 56.1814 115.5648 0.00048697 0.00022332

7(3, 1)+
8 [1 4 1]+1 −0.01078577237 0.00008523730 −0.428098 57.4089 169.1783 0.00016506 0.00002920

7(3, 1)+
9 [1 4 1]+2 −0.01042776763 0.00004443547 −0.428121 59.0303 255.9665 0.00006265 0.00004721

7(3, 1)+
10 [1 4 1]+3 −0.0102910985 0.0000201843 −0.42183 58.58 396.32 0.0000260 0.0000259

7(2, 0)−8 [2 4 0]−0 −0.01068902214 0.00000985401 −0.339103 58.8302 157.5144 0.00034508 0.00001551

7(2, 0)−9 [2 4 0]−1 −0.01032802465 0.00000348696 −0.315956 59.543 271.519 0.00013922 0.00000972

7(2, 0)−10 [2 4 0]−2 −0.01023445 0.00000096 −0.283 60. 492. 0.00005 −0.00002

7(1, 1)+
7 [2 3 1]+0 −0.01095174403 0.00011514216 −0.220870 62.8698 111.3130 0.00055793 −0.00015547

7(1, 1)+
8 [2 3 1]+1 −0.010249298 0.000013960 −0.195 60. 248. 0.000180 0.000026

shape −0.010062644 0.000077496 −0.07994 62.7 150.9 0.000233 −0.000305

shape −0.00969838226 0.00012724354 −0.047538 70.7283 112.2243 0.00109352 −0.00032933

shape −0.0091560112 0.0007807020 0.022013 66.6461 107.5651 0.000869 −0.001159

shape −0.00900978 0.00161141 0.1284 63.58 103.22 0.000554 −0.001934

shape −0.00836693326 0.00062839901 −0.013773 77.2311 90.2745 0.00279719 0.00077291

8(7, 0)−9 [0 7 0]−0 −0.00935212825 0.00001303828 −0.857870 66.9979 188.2829 0.00046388 0.00009332

8(7, 0)−10 [0 7 0]−1 −0.00869522826 0.00001138507 −0.861724 70.7046 236.2490 0.00017070 0.00008048

8(7, 0)−11 [0 7 0]−2 −0.00833548958 0.00000815308 −0.863241 70.8277 301.8585 0.00007925 0.00005849

8(7, 0)−12 [0 7 0]−3 −0.00812663454 0.00000546777 −0.862370 74.8330 383.7732 0.00004784 0.00004110

8(7, 0)−13 [0 7 0]−4 −0.00800212564 0.00000345218 −0.865167 73.907 496.031 0.00002809 0.00002609

8(7, 0)−14 [0 7 0]−5 −0.007927367 0.000002148 −0.86585 73.5 639.9 0.000016 0.000016

8(6, 1)+
8 [0 6 1]+0 −0.009989563 0.000157728 −0.718376 64.359 158.197 0.000469 0.000399

8(6, 1)+
9 [0 6 1]+1 −0.00889432916 0.00011606991 −0.728874 71.9518 196.8732 −0.00006694 0.00028538

8(6, 1)+
10 [0 6 1]+2 −0.0084660491 0.0000929378 −0.697060 78.9094 227.6360 0.00015684 0.00033343

8(6, 1)+
11 [0 6 1]+3 −0.00822209088 0.00003620570 −0.739480 73.2869 296.8845 0.00024046 0.00008421

8(6, 1)+
12 [0 6 1]+4 −0.00806288524 0.00000657637 −0.740383 73.7541 374.8813 0.00015089 −0.00000975

8(6, 1)+
13 [0 6 1]+5 −0.0079650416 0.0000003612 −0.740931 74.07 477.57 0.0000780 0.0000017

8(6, 1)+
14 [0 6 1]+6 −0.00790390 0.00000096 −0.73985 74.2 633.2 0.000033 −0.000001

8(5, 0)−9 [1 6 0]−0 −0.00891842744 0.00001529364 −0.606028 71.9086 184.3708 0.00035780 0.00005943

8(5, 0)−10 [1 6 0]−1 −0.00837092107 0.00001135374 −0.609104 73.4440 244.0934 0.00014589 0.00004126

8(5, 0)−11 [1 6 0]−2 −0.00810607455 0.00000714877 −0.612228 75.4068 328.5004 0.00008334 0.00002719

8(5, 0)−12 [1 6 0]−3 −0.00796793017 0.00000409729 −0.611130 75.179 447.565 0.00004255 0.00001557

8(5, 0)−13 [1 6 0]−4 −0.007895008 0.000002283 −0.6031 75.5 606.1 0.000021 0.000009

8(4, 1)+
8 [1 5 1]+0 −0.00941356442 0.00016073759 −0.480163 71.5186 150.4632 0.00040648 0.00022041

8(4, 1)+
9 [1 5 1]+1 −0.00845419790 0.00009287734 −0.533579 73.2184 209.0840 0.00001494 0.00012806

8(4, 1)+
10 [1 5 1]+2 −0.00812168146 0.00007568056 −0.498253 77.4977 262.5305 −0.00002106 0.00016528

8(4, 1)+
11 [1 5 1]+3 −0.0079787602 0.0000511767 −0.506051 76.43 331.07 0.0001003 0.0001901

8(4, 1)+
12 [1 5 1]+4 −0.0079018534 0.0000221925 −0.49463 75.75 481.91 0.0001083 0.0000307

8(3, 0)−9 [2 5 0]−0 −0.00843337946 0.00001319170 −0.392599 78.5815 185.0395 0.00034108 0.00003145

8(3, 0)−10 [2 5 0]−1 −0.00804995542 0.00000703818 −0.385860 77.6197 272.5743 0.00015415 0.00001641

8(3, 0)−11 [2 5 0]−2 −0.00790278380 0.00000303459 −0.347285 76.58 386.56 0.00009370 0.00000420

8(2, 1)+
8 [2 4 1]+0 −0.00873839078 0.00013205482 −0.287598 80.2244 142.9168 0.00064428 0.00014114

8(2, 1)+
9 [2 4 1]+1 −0.00802621203 0.00004516041 −0.285639 80.3730 228.4842 0.00019132 0.00014922

8(2, 1)+
10 [2 4 1]+2 −0.007867113 0.000013345 −0.2688 78.3 397.7 0.000053 0.000036

8(1, 0)−9 [3 4 0]−0 −0.00791587542 0.00000411898 −0.233280 79.167 249.537 0.00028184 0.00001127

8(0, 1)+
8 [3 3 1]+0 −0.00789898264 0.00006017797 −0.133223 86.737 150.522 0.00052204 0.00033340


